Darwin College Research Report
DCRR-011

GPU-Based Raw Digital Photo
Manipulation

Sarah J. Fortune

June 2010
(electronic edition 8 November 2013)

Darwin College
Cambridge University
United Kingdom CB3 9EU
www.dar.cam.ac.uk/dcrr

ISSN 1749-9194

Abstract

Digital camera use an array of single colour sensors arranged in Bayer pat-
tern. One colour component is captured at each pixel in the array. The
missing colours in the raw sensor data are interpolated by a process called
demosaicing. Demosaicing is one of the first steps in the image processing
pipeline. This makes a high quality demosaicing algorithm especially im-
portant, as interpolation failures can cause highly visible artifacts which are
worsened by further processing steps.

Current demosaicing methods are computationally expensive and often too
slow for real-time applications. I propose two methods to improve the per-
formance of Adaptive Homogeneity-Directed demosaicing, the most widely
used demosaicing algorithm and one of the most effective.

The first method is to take advantage of parallelisation provided by the
GPU, using the NVIDIA CUDA platform. I describe how the algorithm
was adapted for best performance on the GPU architecture and evaluate the
performance gains.

I also present a new demosaicing technique which improves the performance
of current methods while maintaining image quality. It takes advantage of
the fact that demosaicing artifacts occur along horizontal and vertical lines,
but that these features occupy only a small area of natural images. A quick
first pass interpolation is applied to the sensor data. The result is used to
identify regions in the image where artifacts are likely to occur. A high quality
but computationally expensive demosaicing method is applied to these areas.
The performance and effectiveness of this method is evaluated and compared
to existing techniques.

Acknowledgements

I wish to express my gratitude to Dr Harle for supervising this project and
for his support and encouragement over the year. I also wish thank Michael

Gallagher for his care and attention.

“To photograph truthfully and effectively is to see beneath the
surfaces and record the qualities of nature and humanity which
live or are latent in all things.”

Ansel Adams

Contents

1 Introduction

2 Background and Related Work
Camera Design

Demosaicing Methods
CUDA . . e

3 Design and Implementation
CUDA Implementation of AHD

Mask Demosaicing

4 FEvaluation
Performance Analysis,

Mask Demosaicing Image Quality
5 Conclusion

A CIELAB colorspace

CIELAB colour space conversion

27
27
38

47
47
a7

65

71

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Bayer Pattern o oo 6
Bilinear Interpolation o L. 7
Constant Hue Based Demosaicing 11
Edge Directed Interpolation 13
Adaptive Homogeneity Directed Demosaicing 15
Horizontal and Vertical Interpolation 16

Horizontal and Vertical Homogeneity Maps and Direction Se-

lection 18
CUDA Memory Layout 24
Varying Block Size oo 31
Varying Register Count 32
Effect of Optimisation on AHD Kernels 33
Mask Demosaicing using edge detection 44
Mask Demosaicing using artifact detection 45
Performance of bilinear interpolation on CPU and CUDA . . . 50
Performance Comparison of AHD on CPU and CUDA 51
Performance of AHD on CUDA 52
Sample images used for performance analysis. 53
Performance of Mask Demosaicing o4
Mask sizes for sample images 54
Detail from the Train image 26
Average MSE for the Kodak image suite 58

Measure of zipper effect L. 60

il

4.10 User study images

411 Results of the user study

List of Tables

2.1 Comparative performance of demosaicing methods

2.2 Breakdown of AHD execution time

Chapter 1

Introduction

Digital cameras capture images in ‘raw’ format which is the equivalent of
a digital negative. Raw images contain the original data captured by the
sensors before any further processing or compression has been applied to
the image. They may be automatically converted into JPEG images by the
camera. However, this causes an information loss that is unacceptable for
professional photographers. The colour depth of raw images is 12 or 14 bits,
while JPEG limits the colour depth to 8 bits. Additionally, JPEG is an

inherently lossy format and introduces compression artifacts.

Using raw format also gives photographers control over the white balance or
colour temperature. White balancing is a process of colour correction used to
compensate for different lighting sources. For example, photographs taken in
overcast daylight and those taken under artificial lighting will have different
temperatures. Automatic white balancing can be performed by the camera,
but the method is dependent on the camera model and may not be effective
in all situations. However, once white balancing is performed the original
colour data cannot be recovered. For this reason, photographers will use raw
format when they need greater control over the process or where the method

employed by the camera is inadequate.

The raw image does not contain full RGB colour data. Single chip cameras,

CHAPTER 1. INTRODUCTION

which make up the majority of digital cameras, use a single sensor overlaid
with a colour filter array, CFA. This effectively produces a grid of single
colour sensors. As a result each pixel in the image data contains only one
colour value. The CFA typically uses a checker-board arrangement known
as the Bayer pattern|Bay76], 2.1. The Bayer pattern contains twice as many

green sensors as red or blue sensors.

The raw image is ‘developed’ into an RGB image by a process called demo-
saicing. This involves estimating the missing values using the sensor data
available. The most effective demosaicing methods also use assumptions
about the properties of natural images. There is a huge selection of demo-
saicing algorithms, using all kinds of techniques from linear interpolation to
pattern matching|Cok94, CCP99| to artificial neural networks[KHOO0O].

It turns out that demosaicing is quite a difficult problem and basic approaches
produce unacceptable artifacts. A common artifact is ‘zippering’, a checker-
board pattern which appears along horizontal and vertical edges. This effect
can be seen in Figure 2.2 on page 7. It caused by the diagonal alignment of

colours in the Bayer pattern.

The most effective demosaicing method in widespread use today is Adap-
tive Homogeneity-directed Demosaicing|HP05|, AHD. It is a sophisticated
method which attempts to minimise artifacts while maintaining sharp edges
in the result. The standard implementation of AHD is the open source tool
‘decraw’!. Deraw decodes proprietary raw image formats and supports several
demosaicing methods. It is used internally by many other image processing

tools — the author’s homepage lists 55 projects currently using dcraw.

However, the despite the advantage of raw images, there are some drawbacks.
Processing raw images can be very computationally expensive. A raw image
is typically an order of magnitude larger than the corresponding JPEG file.
The best demosaicing algorithms require extensive computation time. De-
mosaicing an average sized raw image using AHD takes around ten seconds.

This makes it unusable for real-time applications such as editing raw images

! Available from http://www.cybercom.net/~dcoffin /dcraw/

CHAPTER 1. INTRODUCTION

in an interactive application. Also, when demosaicing is performed on the

camera, long computation times can restrict the capture rate.

The aim of this project was to improve the performance of demosaicing.
Currently, applicantions are limited by the performance of the demosaicing
methods. Applications which update raw images in real-time are forced to
use less effective demosaicing routines, reducing the user experience. High
quality processing of raw image sets is usually performed as a batch process

due to the long execution times.

The goal is to improve the performance of AHD demosaicing to the point
where it can be used in real-time applications. This would enable photogra-
phers editing raw images to view their changes immediately. It would allow
for greater experimentation as more versions of the image could be produced

in a shorter amount of time.

I propose two methods for improving the performance of AHD demosaicing.
The first method is to take advantage of the GPU hardware found in most
consumer PCs. GPUs provide a platform for low cost highly-parallel com-
putation. They are designed for high performance streaming computation
and are optimised for floating point operations and two dimensional memory
access, which is ideal for this application. However, until recently they were
not widely used for general purpose computing. I plan to take advantage of
the NVIDIA CUDA platform which allows the GPU to be programmed in a
C-like language.

I have implemented a parallel version of AHD demosaicing for NVIDIA GPUs
and a sequential version in C for comparison. I have found the GPU version
achieves a 30x speed-up compared to the C version. The processing time for
an average sized image is under one second, making it much more practical

for real-time applications.

The second method I propose for improving performance is a new demosaic-
ing algorithm called Mask Demosaicing. It is intended to provide high quality
results, comparable to the results of AHD, but with a shorter execution time.

It achieves the performance improvement by identifying areas in the image

CHAPTER 1. INTRODUCTION

that are prone to artifacts and applying a high quality demosaicing algorithm,
in this case AHD, to these areas. A fast demosaicing method is applied to
the remaining areas. Two different methods of identifying the problematic
areas are proposed and evaluated, the first is based on edge detection, the

second on artifact detection.

Chapter 2

Background and Related Work

Camera Design

Digital cameras contain a CCD sensor which detects light intensity. However,
it cannot directly detect colour or the wavelength of light. Colour information
can be captured by placing a colour filter array, CFA, over the sensor. This
gives an image with one colour value per pixel, the ‘raw’ image. The most
common CFA pattern is is the Bayer Matrix, invented by Bruce Bayer of
Eastman Kodak[Bay76|. This is an alternating pattern of red and green
rows, and blue and green rows. There are twice as many green filters as red
or blue because the human eye is more sensitive to green. The most popular
Bayer pattern is GRBG, Figure 2.1 on page 6. It has been proved that this
is the most optimum arrangement for a three colour filter in order to reduce
aliasing|ASHO5|. Another CFA pattern is the CYGM filter which uses cyan,
yellow, green and magenta filters. The CYGM pattern is more sensitive than
an RGB pattern, so it gives more accurate luminance information but at the

expense of reduced colour accuracy.

It possible to build three colour sensors which can detect red, green and blue
values at each pixel. The 3CCD sensor[Woo05] uses a prism to split the light

into separate colour components. These are captured using three different

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.1: The most widely used Bayer pattern|Bay76]. It is a repeating
pattern of the 2x2 GRBG tile. Variations of the Bayer pattern based on
rotations and translations of the basic tile also exist.

CCDs. Alternatively, the Foveon X3 sensor uses three vertically stacked
photo-diodes|[LH02|. Each photo-diode captures a different wavelength of
light. However, both of these solutions are more expensive than a simple
single chip camera using one CCD and a colour filter array. The sensor is
one of the most expensive camera components, accounting for 10% to 25%
of the total cost[APS98].

Demosaicing Methods

An image captured using a CFA is missing two colour values at each pixel.
The missing values are estimated by a process called demosaicing. This sec-
tion will discuss various approaches to demosaicing. The biggest challenge is
avoiding ‘zippering’ artifacts, which are checker-board artifacts that appears

along horizontal and vertical edges, 2.2.

6

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.2: Image demosaiced with bilinear interpolation. It shows zippering
artifacts along horizontal and vertical lines, highlighted in the insets.

CHAPTER 2. BACKGROUND AND RELATED WORK

Bilinear Interpolation

The most basic demosaicing algorithm is bilinear interpolation. The miss-
ing values are interpolated by averaging colour values available at the eight
neighbouring pixels. Missing green values at position ¢, 7 are interpolated

using the formula:

Gic1j + Gy, + Gijo1 + Gijn
4

G, = (2.1)

The interpolation of missing red values depends on their position with respect

to the Bayer array.

Where j is a red and green row, the missing red pixels are interpolated by:

Ri_1j+ Rit1;

. (2.2)

R ; =
Where j is a blue and green row, and 7 is a green pixel, the red value is:

Rij 1+ Rijn
2

R ;= (2.3)

Where j is a blue and green row, and 7 is a blue pixel, the red value is:

Riij 1+ Ripij1Riijo1+ Rig1 11
4

R ;= (2.4)

Blues values are interpolated using the same method as red values.

Bilinear is a simple and fast method of interpolation. It can be implemented
easily and economically in hardware|FZY09, GLAAWV08|. Tt is a good so-
lution where speed is more important than quality, for example generating
previews in interactive programs. However, it produces noticeable zippering,

blurring and moiré artifacts, as seen in Figure 2.2 on page 7.

8

CHAPTER 2. BACKGROUND AND RELATED WORK

Constant Hue Based Interpolation

Bilinear interpolation treats each colour channel separately. However, in nat-
ural images the colour channels are highly correlated. In RGB images the
cross-correlation has been found to be 0.86 for red/green, 0.79 for red/blue,
and 0.92 for green /blue[KTK98|. Cok|Cok87| proposed a method which takes
advantage of this cross-correlation. It has since formed the basis of several
other demosaicing techniques|jr., Kim99, Wel89, Fre87, LP94, Hib95|. It is
based on the assumption that the colour ratio is constant within an object
and changes smoothly along edges. The aim is to try to avoid artifacts,
which are characterised by abrupt changes in colour. This approach is based
on a technique from computer vision, where a scene is assumed to repre-
sent a “Mondrian world”, a single planar surface of Lambertian or matte
surfaces|]AGLM93|. Light reflected from these planar objects is of uniform

intensity.

Cok defines hue as the ratio of chrominance and luminance. The human
eye is more sensitive to luminance than chrominance, so the higher sampled
green channel is taken to represent luminance. The red and blue channels

represent chrominance components. Therefore, hue is defined as the vector

(R/G,B/G).

If X and Y are neighbouring coordinates in the image, assuming a constant

hue gives the following equality:

R R
oYX (2.5)
Gy Gx

This can be rearranged to give an equation to interpolate Ry using the
interpolated green value at Y and the interpolated hue of the neighbouring

pixels.

R, = G2y (2.6)

CHAPTER 2. BACKGROUND AND RELATED WORK

The blue channel can be interpolated in a similar way. The green values
can be interpolated using either bilinear interpolation or a more complicated
method such as pattern matching. The pattern matching[Cok94| method
uses a template to recognise geometric features like edges, stripes and flat

areas, and then applies an appropriate interpolation method for that feature.

Constant hue based interpolation improved on the linear interpolation in use
at the time[DLK78] and it was widely used commercially[RSBS02]. However,
the constant hue assumption does not always hold, and the method can break
down on textured areas and sharp edges, see Figure 2.3 on page 11. It has
since been superseded by more effective modern methods, but its techniques

still form the basis of many demosaicing algorithms.

Edge Directed Interpolation

Zippering artifacts occur on horizontal and vertical edges. A straightforward
means of avoiding this issue is to detect edges in the Bayer image, and interpo-
late along direction of the edge which avoids zippering. There have been vari-
ous approaches to edge directed interpolation|KB02, Hib95, PTAB10, LP94|.
The method proposed by Hibbard[Hib95| calculates the horizontal and verti-
cal gradients in the green channel, which contains twice as much information
as the red or blue channels. If the difference between the horizontal and
vertical gradients is above a certain threshold, the larger gradient determines
the direction of interpolation. Otherwise, it is assumed that the gradients
refer to either a flat area or a highly textured noisy area, in which case the

algorithm falls back to bilinear interpolation.

Edge directed interpolation has been extended to exploit the correlation be-
tween colour channels by Laroche and Prescott|LP94]. Their method detects
gradients in the red and blue channels. The green channel is interpolated
according to the direction of the gradient. Red and blue channels are inter-

polated using bilinear interpolation.

Hamilton and Adams[Ada97| used second order gradients to detect edges.

10

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.3: Demosaicing using Cok’s constant hue assumption|Cok87|. This
method shows a slight improvement over bilinear interpolation. Zippering is
still visible, but the magnitude of error in colour is reduced.

11

CHAPTER 2. BACKGROUND AND RELATED WORK

Horizontal and vertical edges in the green channel are detected by the pres-
ence of high frequencies in the green and chroma (red or blue) channel. Edges
are detected using the laplacian of the green channel and the gradient of the

chroma channel:

Hij = |Gi1j — Gigrj| + 2R 5 — Ri—oj — Riyajl (2.7)

Vii =1Gij—1 — Gijm| + |12Rij — Rij—2 — Ri jio (2.8)

The larger gradient value determines the direction of interpolation. The
green channel is interpolated by averaging the neighbouring green pixels and
using a ‘correction term’ from the chroma channel. The correction term acts
as an averaging filter which reduces aliasing. If the horizontal gradient, H, ;,
is larger the vertical gradient, V;;, then the green channel is interpolated

using the horizontal method:

Gij-1+Gijn n 2R; j — Rij—o — R ji0

G, = ; T (2.9)
Otherwise, the following vertical method is used:
G;J _ Gi—1j+ Git1 n 2R; j — Ri—9j — Rijo (2.10)

2 4

A similar method is used to interpolate the red and blue channels, except

diagonal edges are detected instead of horizontal and vertical.

Edge directed interpolation avoids the blurring caused by bilinear interpola-
tion and gives sharper results along horizontal and vertical edges. However
it has the potential to cause misguidance artifacts. These artifacts occur
when the algorithm estimates the edge in the wrong direction. This can
cause breaks to appear in straight lines, as well maze-like artifacts, as seen
in Figure 2.4 on page 13. This kind of artifact is particularly noticeable as

the human eye is sensitive to straight lines.

12

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.4: Image demosaiced using Hamilton and Adams edge directed
interpolation[JJ97]. Their method produces fewer zippering artifacts than
constant hue based interpolation. However, mazing artifacts are still visible.

13

CHAPTER 2. BACKGROUND AND RELATED WORK

Adaptive Homogeneity Directed Demosaicing

This section describes the Adaptive Homogeneity-Directed demosaicing method,
AHD, proposed by Hirakawa and Parks|HP05|. AHD is currently one of the
most effective demosaicing algorithms|GGAS05| and is widely used in open
source demosaicing software. It improves on the method proposed by Hamil-
ton and Adams|JJ97| by determining the interpolation direction using the
‘homogeneity’ of the neighbourhood instead of by explicitly detecting edges.
Hirakawa also adds an extra artifact removal stage by applying a median

filter to the interpolated image.

AHD Algorithm steps

Interpolation Horizontal and vertical interpolation is performed over the
entire image, giving two interpolated images H' and V'. The green channel
is interpolated using the same method as Hamilton and Adams, formulae
(2.9) and (2.10). However, Hirakawa and Parks arrived at this method in-
dependently. Starting from the constant-hue assumption, they assume that
the difference between the green and chroma (red and blue) channels varies
slowly. They designed a low-pass filter that would minimise the difference
between the green and chroma channels, G — R and G— B. The discrete form

of the filter gives the same interpolation method as Hamilton and Adams.

The red and blue channels are interpolated without regard to the direction,
the same method is used for both the horizontal and vertical images. They
make the assumption that R — G is slowly varying, at a rate lower the sam-
pling frequency. Then R — G can be reconstructed from the surround pixels

by applying a low pass filter, L, to the sampled R interpolated G values:
(R—G)=L*x(R-G) (2.11)
Rearranging this gives the method for interpolating the red channel:

(Rix1j+1 — Gigy j1)
4

Ri; =G+ (2.12)

14

CHAPTER 2. BACKGROUND AND RELATED WORK

i

Figure 2.5: Image produced using Adaptive Homogeneity-Directed
demosaicing[HP05], AHD. There is no zippering and the misguidance and
mazing artifacts are almost entirely absent.

15

CHAPTER 2. BACKGROUND AND RELATED WORK

Figure 2.6: The horizontal and vertically interpolated images, H and V.
Each version gives the best results where the edges lie in the same direction
as the interpolation. The homogeneity metric will be used to determine the
most appropriate direction for the different parts of the image.

This formula applies to the case where i, is at a blue pixel in the Bayer
pattern and sampled red values are available at the diagonals. A similar

method is applied to the other positions in the Bayer pattern.

Homogeneity Map The next step is to calculate the homogeneity metric
for each pixel in the horizontal and vertical images. The metric will be used
to decide which interpolation direction should be used for the final result.
It measures how similar the pixel is to the region surrounding it. Artifacts
are caused by high variations in colour and contrast, so a region containing

artifacts will have a lower homogeneity metric.

Hirakawa defines the homogeneity of a coordinate as the number of points

16

CHAPTER 2. BACKGROUND AND RELATED WORK

within a neighbourhood that have similar colour. The homogeneity is calcu-
lated in the CIELAB colour space. CIELAB is designed to reflect the sen-
sitivity of the human eye. The distance between colours in CIELAB colour
space corresponds more accurately to perceived difference than in the RGB

colour space|[WS00]. The conversion method is described in Appendix A.

The homogeneity metric is based on the luminance distance dy, and the

chrominance distance d,;, which are defined as the euclidean distances:

di(z,y) = |vr = yil (2.13)

dap(2,y) = V/ (20 = Ya)? + (25 — yo)? (2.14)

where x and y are CIELAB colours.

The homogeneity metric of a coordinate is the number of pixels within a
ox5 neighbourhood where the luminance and chrominance distances are be-
low the thresholds ¢; and ¢, respectively. The thresholds are determined
dynamically according to the content of the region. In practise, a 3x3 neigh-
bourhood can be used instead, in order to reduce the amount of computation

needed, in exchange for a slight sacrifice in image quality.

Separate horizontal and vertical thresholds e, 5 and €7y are determined from
the horizontal and vertically interpolated images. The threshold e is the
minimum of these two values as it corresponds to the more uniform and less
artifacted direction. For each interpolation direction, the threshold is defined
to be the larger distance between the pixel in question and its immediate
neighbours in the interpolation direction. So, for the horizontal image it is

the maximum of the distances between the left and right neighbours.

ern(i,j) = maX(dL<Hil,j7 Hz',,j—l)7 dL(Hz{,jﬂ Hz(,j—l—l) (2.15)
erv(i,j) = max(dp(V;;, Viy ;) do(Vi;, Vi ;) (2.16)

17

CHAPTER 2. BACKGROUND AND RELATED WORK

(©)

Figure 2.7: The horizontal and vertical homogeneity maps. Brighter areas
represent higher homogeneity, which indicates fewer artifacts. Figure (c)
shows the directions chosen for the final image (black is horizontal, white is
vertical). The decision was made based on which direction had the higher
average homogeneity over a small neighbourhood.

(a) Horizontal Homogeneity (b) Vertical Homogeneity

er(i,7) = min(epy (i, 7), eLv (i, 7)) (2.17)

The €4, threshold is obtained in a similar manner.

Direction selection The homogeneity metric is used to determine which
interpolation direction should be used for the result. For each pixel, the
direction with the lowest average homogeneity over a 3x3 neighbourhood is
selected. Using the spatial average of the homogeneity metric avoids discon-

tinuities in straight lines and reduces in the influence of noise in the image.

Artifact Reduction The final step in the algorithm is artifact removal.
There may be some artifacts remaining in the image after direction selection,
but these can be removed by applying a noise reduction filter. Hirakawa and
Parks use a median filter, which removes noise while preserving edges. The

filter is applied to the difference between the channels, instead of to the

18

CHAPTER 2. BACKGROUND AND RELATED WORK

channels directly, as the difference changes at a lower frequency than the
channel itself. They recommend applying the filter three times for optimal

results.

R = median(R — G) + G (2.18)

B = median(B — G) + G (2.19)

median(G — R) + median(G — R) + B+ R
2

G = (2.20)

AHD Shortcomings

AHD is one of the most effective and popular demosaicing algorithms. How-
ever, its high quality comes at the expense of long processing times. Run
times vary between five and twenty seconds per photo, depending on the
resolution and processor speed. This makes AHD unsuitable for interactive

applications and makes batch processing of images time-consuming.

Method Execution Time (secs)
Bilinear Interpolation 0.4
Variable Number of Gradients 4.7
Patterned Pixel Grouping 0.8
AHD 4.3

Table 2.1: Comparative performance of different interpolation methods: bi-
linear interpolation, variable number of gradients|CCP99|, patterned pixel
grouping|Lin03] and AHD[HPO05]. They are ordered in terms of their effec-
tiveness. AHD is ten times slower than bilinear, and fives time slower than
the next most effective method, patterned pixel grouping.

While AHD produces superior results compared to other methods, it is sig-
nificantly slower. Table 2.1 on page 19 shows the performance of the de-

mosaicing algorithms implemented by Dave Coffin as part of dcraw. The

19

CHAPTER 2. BACKGROUND AND RELATED WORK

Execution Time (%) Function

65 Remove artifacts

21 Build homogeneity map
6 Convert RGB to CIELAB
4 TInterpolate red and blue (horizontal and vertical)
1 Choose interpolation direction

0.5 Interpolate green (vertical)

0.4 Interpolate green (horizontal)

Table 2.2: Breakdown of AHD execution time. Shows the execution time of
each function as a percentage of the total execution time. The results were
obtained using callgrind, the program was run with the parameters recom-
mended by Hirakawa and Parks, which are three artifact removal iterations
and a 5xb homogeneity neighbourhood. Results less than 0.4% have been
omitted

methods are ordered by quality, from the least effective method, bilinear, to
the most effective, AHD. AHD is ten times slower than bilinear, the most
basic algorithm and five times slower the patterned pixel grouping|Lin03],

the next most effective method.

The execution time of AHD is broken down into its major functions in Table
2.2 on page 20, which shows how much time is spent at each stage of the
algorithm. It can be seen that the most computationally expensive part
of the algorithm is the final artifact removal step, which involves several
applications of a median filter. Building the homogeneity map also makes

up a large percentage of the execution time.

In practise the conversion from RGB colour space to CIELAB can be avoided,
and the homogeneity metric can be calculated in RGB colour space without

a significant impact on the quality of the results|HP05, Kil0§].

20

CHAPTER 2. BACKGROUND AND RELATED WORK

CUDA

CUDA (Compute Unified Device Architecture) is NVIDIA’s platform for
general purpose computing on GPUs. It allows developers to write code
which executes on the graphics card without specialised knowledge of the
hardware. CUDA programs typically produce a 10x speedup compared to
programs executed on the CPU and depending on the level of parallelism
accelerations of 25x to 400x have been achieved[RRB*08, HSS09, SPF*07].
The rate of advances in GPU design are continuing to follow Moore’s Law,
while the rate of CPU performance has levelled off OLGT07], meaning that

in the future GPUs will offer even larger performance gains.

Image processing is particularly suited to this platform as it is easily par-
allelised. Experiments have shown that anti-aliasing, an image processing

algorithm similar to demosaicing, improved in performance by more than
200x when moved to the GPU[RGC™09].

CUDA is supported by NVIDIA graphics cards with the GeForce 8 or later,
Tesla and Quadro architecture. CUDA programs are written in ‘C for CUDA’
|Cor10c¢| which is compiled with nvce, NVIDIA’s C compiler. C for CUDA
is a subset of C with extensions for executing functions in parallel. The most
significant restriction is that it does not allow recursion or function pointers.
GPU programs do not have a call stack, all functions are inlined which makes
recursion impossible. Also, it does not support variadic functions, functions

which take a variable number of arguments.

CUDA Execution

CUDA programs execute the sequential parts on the CPU, the ‘host’, and
the parallel parts on the GPU, the ‘device’. Device functions are called
kernels. A kernel is invoked on a certain number of threads with a specific
thread layout, the number of threads necessary is determined at runtime. A
CUDA program may create thousands of threads, there is very little overhead

associated with thread creation. The threads are arranged in a hierarchy.

21

CHAPTER 2. BACKGROUND AND RELATED WORK

Groups of cooperating threads are contained in a block, a three dimensional
structure. Blocks are arranged in a two dimensional grid. The grid contains

all the blocks for a particular invocation of the kernel.

The block is an important concept, as threads within a block may commu-
nicate with one another, while there is no direct interaction between threads
in different blocks (or different grids). CUDA provides access to fast shared
memory for threads within a block. The cost of accessing shared memory
is only one cycle, the same cost as accessing registers. However, if there
are bank conflicts, that is if multiple threads access the same address, the
requests will be serialised, incurring a performance penalty. CUDA also pro-
vides a barrier synchronisation method between threads in the same block.
After synchronisation all writes to device memory and shared memory are

guaranteed to be visible.

At runtime each block is assigned to an available streaming multiprocessor on
the GPU for execution. Each multiprocessor has eight streaming processors,
and can accommodate up to eight blocks. Each multiprocessor has 8,192

registers which are divided among the threads.

The number of blocks on a multiprocessor is referred to as the ‘occupancy’.
Knowing the level of occupancy is important for optimisation, as a higher
occupancy means the processor will be better able to schedule the blocks
to hide memory latency. The occupancy level is determined by the block
size, and also the number of registers and shared memory needed by the
threads. Therefore the number of resources available on the multiprocessor

can become a a limiting factor in the number of blocks that can be scheduled.

Blocks are scheduled by the runtime system according to the best configura-
tion for the hardware. CUDA offers no guarantees about how the blocks are
distributed, or the order in which they are executed. This allows the sched-
uler enough flexibility to choose the best strategy for the particular hardware

model, completely transparently to the developer.

Blocks are split into warps for execution. The warp size is dependent on the

hardware, but a typical size is 32 threads. The execution of warps will be

22

CHAPTER 2. BACKGROUND AND RELATED WORK

interleaved, so that the multiprocessor is not idle while one warp is waiting for
a memory access to return. Threads in a warp execute in parallel, in a single-
instruction multiple-thread, SIMT|[Cor10a] manner. This is similar to SIMD,
except each thread has its own instruction pointer and set of registers. The
same instructions are broadcast to all threads, which execute in lockstep.
However, if threads take diverging branches, the threads on the alternate
branch will be temporarily disabled. When the branches re-converge, the
threads will be re-enabled. A side effect of this model is that diverging
branches incur a performance penalty, as both branches must be issued to
all threads. This only applies to threads within the same warp. If all threads

in the warp take the same execution path, there is no penalty.

CUDA Memory Layout

CUDA programs contain two addresses spaces, the host memory and the
device memory. Device memory is allocated using the cudaMalloc functions
provided the CUDA runtime library, data is copied to and from the device us-
ing cudaMemcpy. Copies may be synchronous or asynchronous, synchronous
copies can take advantage of DMA for faster transfers. Nevertheless, there is
a signification overhead copying data to and from the device, programs that
perform only a few instructions on the device can actually be slower overall

than the same program executed solely on the host.

There are several kinds memory available on the device. Firstly, each thread
can use registers for local variables. Register provides the fastest access,
taking 1 cycle. As discussed in the previous section, registers are local to a
thread. They are the best choice for storing intermediate results. However,
if a thread uses more registers than are available, the values will be spilled

to local memory.

Threads may use a small amount of local memory, up to 16K. Local memory
is private to a thread. However, like global memory, it is located in DRAM
and access may take 400-600 cycles. Local memory is used for arrays and

for storing spilled results from registers. However, accessing local memory is

23

CHAPTER 2. BACKGROUND AND RELATED WORK

[GPU b
e Pro 0 e g Pro O
ead ead aa a
G O C O
(—\ O O O O
ODAd O
Host 5
O O
\ / o J

Figure 2.8: CUDA Memory Layout.

Threads have fast access to shared

memory and the texture cache, which are nearby on the streaming processor.
Accessing other types of memory incurs a large penalty as they are stored in
DRAM. Only global, constant and texture memory may be accessed by the

host.

24

CHAPTER 2. BACKGROUND AND RELATED WORK

slow, and it should be avoided where ever possible.

There are two types of read-only memory, constant memory and texture
memory. They are visible to threads in all blocks. Both types of memory
are cached on the multiprocessor. Any structure can be stored in constant
memory, while textures are more specialised. They are designed for one, two
or three dimensional arrays. The elements of a texture must obey certain
alignment rules. They are optimised for spatially local access. In addition,
the hardware provides a built-in mechanism for interpolating values at non-

integer coordinates.

The final type of memory provided by CUDA is global memory, this is visible
to all threads and is read-write. It is typically used for storing results. Global
memory is not cached, so a single access can take several hundred cycles.
However, if threads within a warp access nearby addresses, the multiprocessor
can coalesce the operations into one or more 128 byte wide transactions.
Coalescing will occur if the threads access memory sequentially according to
their thread ID. So, for example thread 0 accesses an array at index 0, thread
1 access the array at index 1, and so on for each thread in the warp. This
restriction on the access pattern has been relaxed slightly in the most recent
NVIDIA series 10 GPUs. However, as these only became available in late
2009, this dissertation will only consider series 9 or earlier GPUs. In CUDA

terms, these are devices which support compute capability 1.0 or 1.1.

25

CHAPTER 2. BACKGROUND AND RELATED WORK

26

Chapter 3

Design and Implementation

CUDA Implementation of AHD

This section will describe how I implemented a parallel version of the AHD
algorithm on CUDA. The AHD algorithm has four main stages: interpo-
lation, calculating the homogeneity metric, direction selection, and artifact
removal. Each of these steps depends on results from the previous stage,
so they must be executed sequentially. They are implemented as separate

kernels described below.

1. Interpolate green values
This first step in the AHD algorithm is to interpolate the missing green
values, for the horizontal and vertical directions, according to formulae
(2.9) and (2.10). The kernel reads its input from the Bayer image,
which is bound to a texture. The results are written to the horizontal

and vertical images, stored in global memory.

2. Interpolate red and blue values
Now that green values are available at all coordinates in the image,
the red and blue values can be interpolated using formula (2.12). This
kernel is invoked twice, once for the horizontal image and once for the

vertical image. The RGB values are converted to CIELAB values, and

27

CHAPTER 3. DESIGN AND IMPLEMENTATION

written to global memory.

. Build homogeneity map

This kernel determines the luminance and chrominance thresholds, ac-
cording to formula (2.17). Using these thresholds, it calculates the
homogeneity value for both the horizontal and vertical images. The
homogeneity value is obtained by counting the number of pixels within
a 5x5 neighbourhood which are within the two thresholds. The ho-
mogeneity values are written to separate horizontal and vertical homo-

geneity maps.

. Select direction

The direction used for the final result is the one which has the larger
homogeneity value, averaged over a 3x3 neighbourhood. Depending on
the direction selected, the kernel reads the appropriate CIELAB values
from the interpolated image. It converts the CIELAB values back into

RGB, and writes the result to the final image stored in global memory.

. Artifact removal

The artifact removal kernel applies a median filter to each of the chan-
nels. The filter is applied to the difference between the red or blue and
green channels. This kernel executed three times. After each execution
the results are bound to the input texture, so that they are available

for the next iteration.

Memory Layout

The Bayer image needs to be available to the GPU threads, so it is copied

to the global memory and bound to a two dimensional texture. Textures

provide faster access than global memory as they provide caching, and are

optimised for two dimensional access. This is ideal for the AHD kernels, as

they will operate on two dimensional data: the source image, interpolated

images and the homogeneity map.

The results of each kernel will be written to an array in global memory. As

28

CHAPTER 3. DESIGN AND IMPLEMENTATION

global memory is visible to all threads, the results are immediately available
to the following kernel. The arrays are stored in memory in row-major order.
This layout allows them to be bound to a texture to be used an input for the

next kernel.

For best performance global memory reads and writes should be coalesced,
that is, consecutively numbered threads should access consecutive addresses.
All data read by the kernels is from texture memory, where coalescing is
unnecessary. So for this application, only writes to global memory need to
be coalesced. The two interpolation kernels write tri-stimulus values, RGB
and LAB values. The three values need to be combined into a single struct,
char4 for RGB values and float4 for CIELAB values to fit the alignment
requirements for coalescing. These structs can be written to memory as 16-bit
and 128-bit words. The structs are wider than is strictly necessary, however
the performance gains from coalescing outweigh the overhead of writing wider

values.

I found that a straightforward implementation of the algorithm runs into the
memory limit of the most GPUs. AHD makes extensive use of buffers for
intermediate results. There are two buffers for the interpolated images, and
two buffers for the homogeneity maps. For a typical 12 megapixel photo, this
amounts to around 400MB. A mid-range GPU has 512MB of memory, some
of which may already be allocated for graphics rendering. In this situation
the program will often fail to allocate the large contiguous buffers necessary.
To overcome this issue, I added an initial step which would split the image
into tiles. The algorithm would then be run over each tile separately, and
the results combined back into a single image. The tile size is chosen to
be the largest possible, based on the amount of free memory available on
the GPU. This ensures that attempts to allocate memory will be successful,

while maintaining the highest achievable level of parallelism.

29

CHAPTER 3. DESIGN AND IMPLEMENTATION

Threads

The implementation was designed to operate with one thread per pixel. Each
thread is assigned a coordinate in the image and is responsible for updat-
ing that coordinate in the result. Threads are able to differentiate between
themselves by their position in the grid and block, which are available in the
blockIdx and threadIdx variables respectively. From these values, their

coordinate in the image can be calculated using the following method:

x = blockldx.x x blockDim.x + threadldx.x (3.1)

y = blockldx.y x blockDim.y + threadldx.y (3.2)

The typical photo size is 12 megapixels, which will use on the order of 107
threads. This is well within the limits of CUDA, which allows a maximum
of threads 10'? threads. The maximum number of threads per block is 512,
and the maximum grid size is 65535 x 65535 blocks, altogether giving 10!
threads.

Optimal block size The block size used in the implementation was chosen
to maximise occupancy and make best use of the resources. It should be a
multiple of 32, as it will be divided into warps of size 32 and this ensures
that all warps fully populated. Additionally, the number of warps per block
should divide 24, which is the maximum number of warps per multiprocessor.
One configuration which fits these requirements is a block size of 256, which

is the size used in the implementation.

A large block size is preferable for kernels which are memory bound, as there
will be more threads available for scheduling to hide memory latency. How-
ever, with larger block sizes the occupancy becomes limited by the number
registers available. The kernels used by AHD are quite complex, using be-

tween 10 and 25 registers, out of a maximum of 32. Figures 3.1 and 3.2 show

30

CHAPTER 3. DESIGN AND IMPLEMENTATION

the effects that varying the block size and the number registers has on the

occupancy.

Varying Block Size

100 W 256 ,_/-/AX
80

N
q
y

Multiprocessor
Occupancy %

5
.
—

20

16 80 144 208 272 336 400 464
Threads Per Block

Figure 3.1: Shows the effect that block size has on occupancy, assuming no
other restrictions such as register usage. Block sizes which are multiples of
32 achieve 100% occupancy. The red marker indicates the block size chosen
for the implementation.

Kernel Level Optimisations

CUDA kernels are written in C for CUDA, which is largely compatible with
C. Developing kernels is intended to be straightforward for developers with
knowledge of C. However, an implementation that does not take the nature
of the CUDA architecture into account will have unexpected performance
problems. This section describes some of the optimisations made at the

function level for better performance on CUDA.

Figure 3.3 on page 33 shows the effect each of the optimisations had on exe-
cution time. The results were obtained using the CUDA Visual Profiler. The

profiler collects data from the hardware profile counters, and can record the

31

CHAPTER 3. DESIGN AND IMPLEMENTATION

Varying Register Count

100 #é#é#é#é#‘\
80 |
60

Multiprocessor
Occupancy %
N
o
/

20

0 4 8 12 16 20 24 28 32
Registers Per Thread

Figure 3.2: Shows how using a large number of registers can restrict the
occupancy. As threads use more registers, fewer warps can coexist on the
multiprocessor. (The occupancy is a function of both the block size and the
number of registers, this graph shows the occupancy for a block size of 256).

number of registers used, the number of coalesced and uncoalesced memory
accesses, the number of cache hits and misses and the number of diverging
branches. One caveat however, is that only one streaming multiprocessor
keeps profiling data. So, profiling information is only collected for a sample

of the threads, the results for the entire grid are extrapolated from this data.

Execution Path As discussed previously one performance pitfall is diverg-
ing branches. Divergent branches cannot be executed in parallel as the same
set of instructions are broadcast to all active threads. For this application,
the largest source of diverging branches was in the artifact removal kernel.
The kernel applies a median filter to the differences between the channels,
and replaces the current pixel with the median value from its 3x3 neighbour-
hood. The median value is found by sorting the values using an insertion
sort, and then retrieving the middle value. However, the insertion sort rou-

tine contains a conditional while loop which can cause the threads to diverge,

32

CHAPTER 3. DESIGN AND IMPLEMENTATION

Effect of optimisations on AHD kernels

®
o
S

~
o
S

@
o
S

[
=3
S

N
o
I=]

w
o
S

N}
o
S

Kernel GPU Exection Time (ps)
=
o
o

[——
Coalesce Increase
Optimal median Avoid local occupancy by Use fast math

. memo . Unroll loops .
function memory access v reducing P functions

accesses)
register usage

o

First version

Kernels

M Remove Artifacts 540 261 81 72 72 72 72
B Select Direction 19 19 19 19 17 17 17

Build Homo Map | 110 110 110 87 87 85 85
M Interpolate Red/Blue 42 42 42 42 42 42 20
M Interpolate Green 12 12 12 9 9 9 9

Figure 3.3: The effect of various optimisations on the GPU execution time
of the kernels.

Algorithm 3.1.

However, as the median function will always be applied to an array of nine
elements, it is possible to write an optimal median function that contains
the minimum number of compares and swaps|Smi96|. It performs a partial
sort of the array, leaving the median element in the middle position. It is
particularly well suited for CUDA applications as it contains no diverging
branches and performs the minimum number of memory accesses, Algorithm
3.2.

Another situation where diverging branches arise is boundary checking at
the edges of the image. This affects all the kernels, as their results are based
on the neighbourhood of the current pixel. Accessing neighbouring pixels
requires boundary checking to avoid reading outside of the image. However,
this will cause divergence around the borders of the image. As these reads
are from texture memory, the checks can be avoided completely by taking
advantage of the texture addressing mode. The addressing mode specifies
how out of bounds accesses should be handled. They can be clamped to the

minimum and maximum values, or wrap around to the opposite side of the

33

1
2
3
4
5
6
7
8

9
10
11

13
14

CHAPTER 3. DESIGN AND IMPLEMENTATION

Algorithm 3.1 Original version of median function used by the artifact
removal kernel. The while loop on lines 6-9 causes the threads to diverge.

DEVICE int median(int *a, int n) {
/* Perform insertion sort x/

for (int i = 1; i<n; i++) {
int val = al[i];
int j = 1i;

while (j > 0 && al[j-1]1 > val) {
aljl = alj-11;
J--s
}
aljl] = val;
}
/* Return median value */
return aln/2];

+

texture. For this application, clamped is the most suitable mode. By using
this approach, all branching is avoided. Additionally, it provides a further
degree of parallelism as the range checking is now performed on the texture

unit instead of the stream processor.

Local Memory Another performance issue was the use of local memory.
This was an additional contributing factor to the slowness of the artifact
removal kernel. The kernel applies a median filter to the difference between
two channels. The two channels are subtracted, and values are stored in a
local array, which is an automatic variable. Using the method in Algorithm
3.3, the array will reside in local memory. Local memory is actually located
in DRAM, like global memory, meaning each access will take several hundred
cycles. Ideally, these values should be stored in registers where the cost of
access is only one cycle. However, the compiler cannot perform this optimisa-
tion while the array is indexed by a variable as it cannot predict the contents
of the variable, and it cannot predict which positions in the array will be

accessed. This can be overcome by manually unrolling the roll and using

34

O~ O Ot b= W b =

CHAPTER 3. DESIGN AND IMPLEMENTATION

Algorithm 3.2 Improved version of the median function, based on code
from [Dev98|. This is the optimal method for finding the median of nine
values. Additionally, it contains no diverging branches.

#define SORT(a,b) { if ((a)>(b)) SWAP((a),(b)); }
#define SWAP(a,b) { int temp=(a);(a)=(b);(b)=temp; 1}

DEVICE int median9(int * a) {
SORT (al[1],al2]); SORT(al4],al5]); SORT(al7],al8]);
SORT(a[0],al1]); SORT(al3],al4]1); SORT(al6],al7]);
SORT (al[1],al[2]); SORT(al4],al5]); SORT(al7],al8]);
SORT (al[0],al3]); SORT(alb],al8]); SORT(al4],al7]);
SORT(al[3],al6]); SORT(al1],al4]); SORT(al[2],al5]1);
SORT (al[4],al7]); SORT(al4],al2]); SORT(al6],al4]);
SORT (a[4],al2]); return al4];

only constant indexes. The compiler provides a pragma to perform this opti-
misation automatically, #pragma unroll, but unfortunately it cannot unroll

nested loops.

Fast Math Functions The CUDA instruction set includes several spe-
cialised instructions for mathematical functions. These include sin, cos, log2
and exp2. They execute in one cycle[CorlOb|. These come in useful for the
second interpolation kernel which converts RGB values to CIELAB values.
The conversion method, which is described in Appendix A, includes several
cube root operations. The first version of the kernel used pow(x,1/3) to com-
pute cube roots. The pow() function, which is provided by the CUDA stan-
dard library, is compiled into basic arithmetic instructions. However, there is
a faster but slightly less accurate version, __pow. It is implemented using the
formula 2¢*°92% which in CUDA code becomes exp2f(y * __log2f(x)).
The exp2 and __log2f functions compile directly to PTX instructions which
execute in one cycle. This greatly reduces the overall number of instruc-
tions, and halves the execution of the kernel. Although this method provides

slightly lower accuracy, it does not have a perceptible affect on the quality

35

© 00~ O Tl W N+

= = e
= W N = O

CHAPTER 3. DESIGN AND IMPLEMENTATION

Algorithm 3.3 This function returns the median of the difference of two
channels. The array diffs resides in local memory, causing expensive ac-
cesses to DRAM. The compiler is prohibited from optimising this function
and storing the array in registers by line 10, where the array is indexed by a
variable.

DEVICE int median_diff (int x,int y,int chanl,int chan2){

int diffs[9];

int 1 = 0;
for (int dy = -1; dy <= 1; dy++) {
for (int dx = -1; dx <= 1; dx++) {
pixel wvall =
tex_get_color (src,x+dx,y+dy,chanl);
pixel val2 =

tex_get_color(src,x+dx,y+dy,chan2);
diffs[i++] = vall - val2;

}

return median9 (diffs);

of the result.

Unsuccessful Optimisations There are several other optimisations rec-
ommend by the NVIDIA’s Best Practises Guide|Cor10b] such as reducing the
number of registers, in order to increase occupancy. However, I found this
to be a particularly difficult and unreliable optimisation. They are several
approaches to reducing the number of registers used by a kernel, such as re-
ordering calculations, unrolling loops and re-computing results instead of the
storing them. However, it is often unclear where the registers are used and
making changes to the source code can have unpredictable results on the reg-
ister usage. It is possible to view the intermediate assembly code generated
by the compiler. But, register allocation is performed by the assembler, not
the compiler, and so the generated assembly code contains only references to
virtual registers. The physical registers allocated will not correspond directly

to the virtual registers, obscuring the actual register usage.

36

CHAPTER 3. DESIGN AND IMPLEMENTATION

Adding to the difficulty, reducing the number of registers does not always
increase performance. It is possible to increase occupancy while actually
degrading performance. T have found that often the changes necessary to
reduce the number of registers will increase the number of instructions issued

leading to a longer overall execution time.

37

CHAPTER 3. DESIGN AND IMPLEMENTATION

Mask Demosaicing

The most effective demosaicing algorithms, like AHD, avoid avoid zippering
artifacts by determining the orientation of edges in the image. However, in
flat areas where artifacts do not occur these methods do not provide any
advantage over simple bilinear interpolation. The extensive computation
performed to estimate the edge direction or avoid misguidance is unnecessary
in regions where there are no edges. Given that flat regions make up the
majority of the area of natural images|OF96, LZWO03|, a large portion of

that computation could be avoided.

In this section I propose a new demosaicing method, Mask Demosaicing,
which aims to improve on the performance of AHD while maintaining image
quality. Mask Demosaicing achieves better performance by selectively ap-
plying a high quality demosaicing method to the areas in the image where
artifacts are likely to occur. The demosaicing method chosen for these areas
is AHD. However, the proposed method is not specific to AHD, any high
quality but prohibitively slow technique could be used.

The remaining areas in the image are demosaiced using bilinear interpolation
for its speed. As bilinear interpolation is only applied to flat or slowly varying

parts of the image it will not introduce artifacts.

Algorithm 3.4 Mask Demosaicing outline
1. Perform a bilinear interpolation on the Bayer image.
2. Identify edges in the interpolated image.
3. Dilate the edge areas, this becomes the mask which will used in the
next step.
4. Perform AHD demosaicing on the regions covered by the mask.

The biggest difficulty lies in identifying the areas where AHD should be ap-
plied and from these creating the mask. I propose two methods for detecting
these areas, the first is based on the gradient, and the second is uses areas of

high contrast.

Both methods operate on the full colour RGB image that has been produced

38

CHAPTER 3. DESIGN AND IMPLEMENTATION

using bilinear interpolation. It is possible to detect edges directly in the
Bayer image[JJ97|. However, during testing I found that performing edge
detection in the interpolated image proved more reliable, as it is possible
to detect higher frequency changes. This introduces an overhead into the
method. Bilinear interpolation must be performed on the whole image, even
though only part of the result will be used in the final image. However,
as seen in Table 2.1 on page 19, bilinear interpolation is roughly ten times
faster than AHD. So, if less than 90% of the image is covered by the mask,
the overhead will be offset by the performance gained by avoiding AHD.

Gradient based edge detection

The first edge detection method is based is a standard technique from com-
puter vision, edge detection using first order gradients. The Sobel operator[SF73|
is used to calculate the horizontal and vertical gradients. The image is con-

volved with the 3x3 operators shown below, to produce the gradient maps
G, and G,

+1 0 -1
Go=|+42 0 =2 | =L (3.3)
+1 0 -1
-1 -2 -1
Gy=| 0 0 0 [*L (3.4)
+1 42 +1

The magnitude of the gradient is obtained by:

G=,/G2+@> (3.5)

However, a simpler approximation is sufficient for this purpose:

39

CHAPTER 3. DESIGN AND IMPLEMENTATION

|Gl =[Gl +1Gy| (3.6)

A threshold is applied to the gradient map G to give a binary image. This
binary image is the first step in creating the mask to be used with AHD. The
values in the gradient map range from zero to 255. The threshold used in the
implementation was 40. This figure was chosen so as to include perceptible

edges and avoid small gradients caused by noise.

Edge detection is performed in grayscale image. The interpolated image is
converted to grayscale using the following luminance method|GW92|, where
the RGB components are weighted according to the response of the human

eye.

L =0.59G +0.3R+0.11B (3.7)

It also possible to perform edge detection using only the green channel. This
takes advantage of the fact it contains twice as much information as the
red or blue channels and avoids the extra operations needed for grayscale
conversion. However, I found that edge detection in the green channel was
slightly less effective and the minor improvement in performance did not

justify the reduction in quality.

Artifact based edge detection

The second method for creating the mask is based on artifact detection rather
than edge detection. Instead of attempting to identify edges in the inter-
polated image, it identifies regions that contain artifacts. The presence of
artifacts indicates where bilinear interpolation has failed, and where AHD
should be applied. This has the potential to be more reliable than straight

forward edge detection as it directly identifies the problematic regions.

The method works on the assumption that artifacts are characterised by

abrupt and large changes in colour. T define the variation in colour around

40

CHAPTER 3. DESIGN AND IMPLEMENTATION

a point to be the average colour distance between the point and its eight
neighbours. A larger variation in colour indicates that the point is more

likely to contain an artifact. The variation V' at a point ¢, j is given by

1
Vi) =g S dist(ll, 1) (3.8)

z,yGNi,j

where X, ; is set of coordinates of the eight neighbours of 4, j, and dist(/; ;, I,)

is euclidean distance between the two RGB values I} ; and I} .

Applying this operation to the interpolated image gives a map of the variation
in colour. A threshold is applied to this map to create a binary image,
representing the areas where artifacts occurred. The threshold selected for

the implementation was 50, this figure was determined by experimentation.

Dilation

A region surrounding the edge is required by AHD to calculate the homo-
geneity value. To ensure that a sufficient area around is available within the
mask, the regions in the binary image are grown by performing a dilation.

The structuring element used in the dilation is:

I
—_ = =
—_ = =
— =
—~~
W
Nej
N—

The structuring element K is applied to each pixel p in the binary image. If
the intersection of K with the binary image is non-empty, if there is at least
one white pixel inside K, then the pixel p is set to white. This ensures that
there is at least two pixels surrounded each edge pixel. This is sufficient to

create a homogeneity map with the recommended 5x5 neighbourhood.

41

CHAPTER 3. DESIGN AND IMPLEMENTATION

Applying AHD

The original AHD algorithm is applied to the areas of the image covered
by the mask. For simplicity of implementation the interpolation steps are
performed on the entire image. This is not expected to have a significant
effect on the performance of the final algorithm as it accounts for only a
small percentage of the overall runtime. However, the mask is applied in the
more expensive steps which follow: colour space conversion, homogeneity

calculation and artifact removal.

The bilinearly interpolated image is updated with the results of the AHD al-
gorithm following the direction selection step. This is before the final stage,
artifact removal has been applied. Artifact removal is applied to each pixel
under the mask. However, as it operates in a 3x3 neighbourhood, at the
edges of the mask the bilinear interpolated results are included in the fil-
ter. This has the effect of smoothing together the two methods and avoids

discontinuities where they meet.

Results

The results of both methods can be seen in Figure 3.4 on page 44 and Figure
3.5 on page 45. Both methods are largely successful in identifying the regions
in the image where AHD should be applied. In the areas where bilinear
interpolation is used there is no perceptible difference in quality. Also, there

is no seam where the two methods meet.

The edge detection method shows some problems detecting edges on part
of the fence. In this region the magnitude of the gradient is quite low. It
falls below the threshold used to create the binary image, and the area is not
included in the mask. This shows the limits of what can be achieved with
a simple thresholding method, to overcome this issue a more sophisticated

method for creating the binary image would be necessary.

The artifact detection method does not have this problem. It correctly identi-

42

CHAPTER 3. DESIGN AND IMPLEMENTATION

fies the fence as containing an edges, despite the fact the edges in the original
image are quite weak. The results produced by bilinear interpolation in this
area are highly artifacted,Figure 2.2 on page 7, which is recognised by the

artifact detection method.

The results also show that the artifact detection method has included a
larger part of the foreground in the mask. This is because artifact detection
is more sensitive to textured and noisy regions. Textured regions may not
contain strong horizontal or vertical edges, and so they may be recognised by
the gradient based edge detector. However, bilinear interpolation will cause
blurring and a loss of detail that is undesirable. For this reason it more

appropriate to use AHD in these regions.

A full evaluation of the quality of the images produced can be found in the

following chapter, along with an evaluation of the runtime performance.

43

CHAPTER 3. DESIGN AND IMPLEMENTATION

(a) Mask produced by the edge detection (b) Final result
method

Figure 3.4: Results of Mask Demosaicing using method (1), edge detection.

44

CHAPTER 3. DESIGN AND IMPLEMENTATION

(a) Mask produced by the artifact detection (b) Final result
method

Figure 3.5: Results of Mask Demosaicing using method (2), artifact detec-
tion.

45

CHAPTER 3. DESIGN AND IMPLEMENTATION

46

Chapter 4

Evaluation

Performance Analysis

The section compares the performance of a single-threaded implementation
of AHD using the host machine’s CPU, and a parallel version running on the
GPU. As an indicator of baseline performance, bilinear interpolation is also
included in the evaluation. The runtime performance of Mask Demosaicing is
also evaluated. The final part of the chapter examines the quality of images
produced with Mask Demosaicing using both quantitative and subjective

measures.

Method

The performance of the two AHD demosaicing routines were compared, one
implemented in C which executes on the host CPU, and one implemented
in CUDA. Similarly, two bilinear interpolation routines were compared, a

CUDA version and host version written in C.

The execution time of the routines were recorded using the times(2) system
call|[Ker09|, which records the CPU time spent executing the process. It

includes both user time and system time. The resolution of the timer on

47

CHAPTER 4. EVALUATION

the test machine was 10 milliseconds. To minimise the effect of random
errors, each test was executed six times and the results were averaged. The
recorded result is the execution time for the demosaicing operation, excluding
time spent reading the image from disk or saving the results. It should be
noted that for CUDA programs the time includes copying the image to device

memory and retrieving the results.

The sample images used for testing were selected from a repository of RAW
images!. The photos were chosen to represent a variety of scenes and cam-
era models. RAW images are encoded in proprietary manufacturer specific
formats. The images were decoded to uncompressed Bayer images using the
routines included in dcraw. Demosaiced versions of the sample images can

be seen in Figure 4.4 on page 53.

The images varied in resolution from 12 megapixels to 5 megapixels. In
order to test the performance for various image sizes, the original images

were cropped down to a range of sizes, between 12 and 0.1 megapixels.

Experiment environment

Tests were performed on an Intel Core2 Quad CPU Q9400 at 2.66GHz run-
ning Ubuntu Linux 9.10, with kernel version 2.6.31-21-generic. The programs
were compiled with gee 4.3.4, and nvee 3.0. CUDA tests were carried out
on an GeForce 9600 GT graphics card which has 6 multiprocessors and a
total of 48 stream processors (8 per multiprocessor) and 512MB of memory.

Version 3.0 of the CUDA runtime and driver were used.

'http://raw.fotosite.pl

48

CHAPTER 4. EVALUATION

Results

Bilinear Interpolation

Bilinear interpolation is the fastest demosaicing algorithm. The number of
instructions per pixel is 2 compares, 8 adds and 2 right-shifts. The execution
times for bilinear interpolation running on the host and on CUDA are shown

in Figure 4.1 on page 50.

As the amount of computation required so low, CUDA is not expected to
provide much an improvement. The results show that for images under six
megapixels, the CPU version is actually faster than CUDA version. This is
caused by the overheads associated with running CUDA programs. These
include copying the image data to the GPU, launching the kernel, creating
CUDA threads, distributing data to the streaming processors, retrieving the

results and finally copying the results back to host memory.

However, despite the large overhead which impacts performance on small
data-sets, the CUDA version scales better than the CPU version. As the size
of the image increases the execution time on CUDA grows more slowly com-
pared to on the CPU. For images above six megapixels, the CUDA version
overtakes the CPU one. It should be said though that it is only a modest
improvement, execution time for the largest image, ~12 megapixels, takes
270ms on the CPU compared to 200ms on CUDA.

From these results we can conclude that for large data-sets, in this case images
over 6 megapixels, CUDA offers a performance benefit. In this situation, as
the computation performed is so small the performance gain is quite minor.
However, for more complex calculations the performance gain is expected to

be much larger.

AHD Demosaicing

The results of the AHD experiments are shown in 4.2. The execution time
for AHD running on the host machine and on the GPU were tested. The

49

CHAPTER 4. EVALUATION

Performance of Bilinear Interpolation on CPU and CUDA
300

250
/
200

Execution Time (ms)
=
w1
o

100

0 2 4 6 8 10 12
Image size (megapixels)

A Bilinear CUDA version

A Bilinear CPU version

Figure 4.1: Comparison of the performance of bilinear interpolation running
on the CPU and on CUDA.

20

CHAPTER 4. EVALUATION

Performance comparison of AHD on CPU and CUDA
25

20

15

A AHD CPU version
> AHD CUDA version

Bilinear CPU version

Execution Time (secs)

V2

O SRS N NN SN A

= Saad T —— = T — —

0 2 4 6 8 10 12
Image Size (megapixels)

Figure 4.2: Comparison of the performance of AHD on CPU and CUDA.

performance of bilinear interpolation on the CPU is also included for com-
parison. The CUDA version shows a massive improvement in performance.
It is 30x faster than the CPU version for image over six megapixels. For a
typical 12 megapixel image the processing time on CUDA is approximately

850ms, compared to 23 seconds for the CPU version.

The performance of AHD on CUDA can be seen more clearly in Figure 4.3
on page 52, which omits the larger CPU results. It can be seen that for all
image sizes the CUDA implementation outperforms the CPU version. Even
for the smallest workload, the 0.1 megapixel image, the CUDA version offers

a performance improvement.

Figure 4.3 on page 52 shows a spike in the execution time of the CUDA
version around the 11 megapixel size. For images of this size and above,
the memory needed for intermediate results was greater than the memory
available on the GPU. In this situation the image is split into tiles and each

tile is demosaiced separately. As a result, the level of parallelism is reduced

ol

CHAPTER 4. EVALUATION

Performance of AHD on CUDA

900

A AHD CUDA version 'y
800 A Bilinear CPU version A
A A AHD CPU version
700 -

600 A

500

400
. “/‘/‘(K{r
300

Execution Time (ms)

6.
Image size (|

Figure 4.3: Performance of AHD on CUDA, bilinear interpolation is included
for comparison. For clarity, the CPU results above 900ms are omitted.

causing the drop in performance.

CUDA offers a substantial improvement in performance over the single-
threaded version. There are also some other benefits that are not evident
from the timing results. The CUDA version stores all intermediate results
on the GPU. Aside from the buffer used to hold the initial raw image data,
it does not consume any host memory. AHD requires at least four intermedi-
ate buffers, for the two interpolated images and the two homogeneity maps.
Real world implementations of AHD try to avoid excessive use of memory by
performing demosaicing in tiles or a sliding window|Kil08|. Regardless of the
method employed, a certain amount of memory required. The CUDA version
is able to avoid any extra memory use by taking advantage of the memory

available on the GPU, which would not otherwise be practically accessible.

Another benefit of having the results available on the GPU is that they
can be displayed to the screen directly without the need to copy the data
back to host memory. CUDA provides interoperability with OpenGL, so
OpenGL textures can be mapped into the CUDA device address space. This
provides an additional performance benefit for applications such as image

editing software, where the results are displayed to the screen immediately.

52

CHAPTER 4. EVALUATION

Figure 4.4: Sample images used for performance analysis.

For a 12 megapixel image, the time spent copying results from the device to
the host is approximately 25ms. This could be avoided to give an extra 3%

speedup to the demosaicing routine.

Mask Demosaicing

The Mask Demosaicing method works by detecting areas where artifacts are
likely to occur and creating as mask of these areas. The area covered by the
mask is demosaiced using AHD and bilinear interpolation is applied to the
remaining areas. As a result, the performance is dependent on the content of
the image. Images with a lot of detail or very noisy images will take longer
to demosaic as more areas will be identified as edges. The images used in
the performance analysis are shown in Figure 4.4 on page 53. The images
are intended to represent a wide range of image types, including images with
high and low amounts of detail, as well as photographs taken indoors and

outdoors, under natural and artificial light.

The results of performance tests of Mask Demosaicing, 4.5, show the re-

23

CHAPTER 4. EVALUATION

25

20

Time (sec)

Performance of Mask Demosaicing
% X
A Mask Demosaicing v1 /\ \>/§<
%
A Mask Demosaicing v2 X
~AHD X
A
< Bilinear X &
&
2K XX
¥ st
3§ << &Q N A : A A
A
5 LA .
(/»x Lo s
) . N AA t R A AA A A
W R ‘AAAAA‘A:AA‘A‘
K o A‘fA L, A% AA‘A“ *AﬁAAAAAA A
X AKX - Ll Y x A 'Y Ly
\\Y/ 44 AA‘A‘i‘AA‘ ‘s ‘: YT A‘; ‘Ai‘ “ s
x¢ 2 A A T e
W a aARR *}i‘i‘ﬂq e
wakid B Bt
0 A+ ave DO SO IO K O
2 4 6 8 10 12
Image Size (megapixels)

Figure 4.5: Shows the performance of the proposed Mask Demosaicing
method compared to AHD and bilinear interpolation. The edge detection
method is referred to as v1, and the artifact detection method as v2.

100

Mask size as percentage of total area (%)

B Mask Demosaicing v1

W Mask Demosaicing v2

Mask Sizes

City sunset Window

Chair

Ducks Flowers Landscape Neon-light Portrait Ribbon Train

Photograph

Toys

Figure 4.6: Shows the size of the mask for each of the sample images. The
mask size is expressed as a percentage of the total image size. For the outdoor
and well-lit photographs both methods produce masks of roughly the same
size. However, the artifact detection method (v2) creates much larger masks
for low light and noisy photographs.

o4

CHAPTER 4. EVALUATION

sults vary according to the image content. All the images tested showed
an improvement in performance compared to AHD with the edge detection.
However, the performance of the artifact detection method is more varied,
with some images experiencing an speedup of 4x compared to AHD, while

others show no improvement.

The performance improvement is proportional to the mask size. The mask
sizes for the sample images are shown in 4.6. For the outdoor and well lit
images, both methods produce roughly similar sized masks. In this situation,
the size is dependent on the amount of detail in the image, for example the
'City sunset’ image, which has almost no detail in the foreground, has a
mask size of around 15%; while the ’Flowers’ photograph, which contains

much more fine detail, has a much larger mask size, approximately 60%.

However, for low-light and indoor images the artifact detection method cre-
ates a much larger mask than the edge detection method. This can be seen in
the mask sizes for the "Toys’, 'Ribbon’ and "Train’ photographs. Photographs
taken under these conditions contain a lot of noise. The artifact detection
method cannot distinguish between noise caused by the sensors and artifacts

introduced by bilinear interpolation, causing the larger mask sizes.

The "Train’ photograph is an example of the worst case performance of Mask
Demosaicing with the artifact detection method. The photograph was taken
indoors using a short exposure time to avoid blur on the moving train, and
high sensitivity setting on the sensor, ISO 1600. In these circumstances the

performance of Mask Demosaicing is almost equal to the performance of
AHD.

In these situations, where it is known beforehand from the ISO setting that
the image will be very noisy, it may be preferable to abandon any attempt
to use Mask Demosaicing, or to fall back to Mask Demosaicing with edge
detection. Another alternative might be to remove noise from the image
before demosaicing. The latest research has found that denoising and demo-
saicing can be performed simultaneously[HP06, LLHL06, ZWZ07, PFBKO0S|.

Further examination of this problem is beyond the scope of this dissertation,

29

CHAPTER 4. EVALUATION

Figure 4.7: Detail from the ‘ITrain’ image, demosaiced using bilinear inter-
polation. The photograph was taken with ISO 1600 with causes significant
noise in the raw image.

but is an interesting topic for further research.

o6

CHAPTER 4. EVALUATION

Mask Demosaicing Image Quality

This section compares the quality of images produced with Mask Demo-
saicing to those produced with AHD. Both objective and subjective quality
measures are employed. The two methods were applied to a set of test im-
ages which had been down-sampled with a Bayer filter. Both sets of results
were compared to original image to asses the quality of the demosaicing.
The objective measures used are the mean square error, MSE, and a mea-
sure of zipper effect|LT03] designed specifically for evaluating demosaicing

algorithms.

Quantitative Measures

The mean square error, MSE, is a widely used method of measuring the error
introduced into a signal. Tt based on the difference between a reference signal
and a noisy signal. It is commonly used to measure the effectiveness of image

restoration or compression techniques.

The standard test suite for demosaicing algorithms is the Kodak Lossless True
Color Image Suite?. It consists of 24 photos with a resolution of 768x512,
showing various natural scenes. The images were down-sampled with the
Bayer pattern, and then demosaiced using Mask Demosaicing, AHD and
bilinear interpolation. The MSE was calculated as the difference between

the original image and demosaiced image.

NxM
1

2

1,j=1,1

where [is the reference image with dimensions N x M, and I’ is the inter-

polated image. The MSE was calculated separately for each colour channel.

The average MSE results for each method can be seen in Figure 4.8 on

% Available from http://rOk.us/graphics/kodak /

57

CHAPTER 4. EVALUATION

240

220

200

180

160

140

120

100

Average Mean Squared Eerror

80

60

40 T

50 | T T 1

AHD Bilinear Mask v1 Mask v2

Figure 4.8: The mean square error averaged over 24 images in the Kodak
image suite. The MSE is presently separately for each colour channel. The
error bars show the standard deviation.

o8

CHAPTER 4. EVALUATION

page 58. The results show only minor difference between the quality of
AHD and Mask Demosaicing. The same evaluation was performed on other
demosaicing techniques by Gunturk et al|GGA™]. They found that for other
traditional demosaicing methods such as edge-directed[Kim99, JJ97, Hib95|,
constant-hue based|Cok87] and pattern matching|CCP99|, the average MSE
ranged between 60 and 20. They found that AHD was second most effective
method of the ones they tested, it was out-performed only by Gunturk’s
alternating projections method|GAMO2|. The results for Mask Demosaicing
show that it out performs these traditional methods and is closer in quality
to AHD than any of the other techniques.

Despite the widespread use of MSE in image processing, it is not always
a good measure of the perceived image quality[WB09|. This is especially
true for demosaicing algorithms where zippering artifacts may be under rep-
resented as they only make up a small percentage of the total area of the

image.

The zippering measure was designed to detect checker-board artifacts in-
troduced during demosaicing. The method detects zippering by looking for
neighbouring pixels which had similar colour in the reference image, but
which have perceptibly different colour in the demosaiced image. The most

similar coordinate s(i,j) of a point 7, is the neighbouring pixel with the
smallest CIELAB colour distance, AEY,

s(i,j) = min AE} (1, 1,) (4.2)

7y€Nz ,J

where N, ; are the coordinates of the eight neighbours of 4, j. Zippering is
present at i, j if the colour difference between i, 7 and s(i, 7) in the reference

image and the interpolated image is greater than a threshold o

|AEL (T, Isig) — DEG(I 5, T)| > 6 (4.3)

4,57 +5(4,5)
The threshold, d, is chosen to be 2.3 based on the limits of human colour

29

CHAPTER 4. EVALUATION

0.8

0.6 T

0.4 -

Measure Zipper Effect

Bilinear AHD Mask vl Mask v2

Figure 4.9: Measure of zipper effect averaged over 24 images in the Kodak
image suite. The error bars show the standard deviation.

perception. The measure of zipper effect for the entire image is the number
of pixels affected by zippering divided by the size of the image. This gives
a result in the range zero to one, representing the estimated fraction of the

image that is affected by zippering.

The measure of zipper effect for each demosaicing method is shown in Fig-
ure 4.9 on page 60. The results are averaged over the 24 images in the
Kodak image suite. AHD and Mask Demosaicing using artifact detection
show very similar results. Mask Demosaicing using edge detection performs
slightly worse. This may be caused by low level gradients which fall below the
threshold for edge detection, but which produce noticeable artifacts in the
result. These are more easily identified by the artifact detection mechanism,

as artifacts cause very large changes in colour within a small area.

60

CHAPTER 4. EVALUATION

Subjective Quality Measurement

The quality of Mask Demosaicing was also evaluated in terms of its sub-
jective quality. The aim of the study was to determine whether there were
perceptible differences between images demosaiced using AHD and Mask De-
mosaicing. Subjects were shown two copies of an image, one produced with
AHD and the other produced with Mask Demosaicing. They were asked
which they preferred or if they had no preference for either of the images.
The images were viewed as large prints to give the most realistic testing

scenario and ensure consistent conditions across tests.

Task

Subjects were presented with two photos of the same scene, labelled ‘A’ and
‘B’. They were asked which photo they would prefer to have or if they have no
preference. This task was repeated for six different pairs of images, shown in
Figure 4.10 on page 62. The subject was given as much time as they wanted
to look at each set of prints. They were free to move the prints around, to

examine them at close range or compare them side by side.

The images were chosen to be representative of a variety of different scenes,
both indoor and outdoor, with natural and artificial lighting. They also
included images with extensive detail, lots of horizontal and vertical lines,

noisy images and images including human faces.

Two version of each image were shown to the subjects, one produced with
AHD and and one with Mask Demosaicing. The Mask Demosaicing images
were created using the edge detection method. Both methods used the rec-
ommended parameters for best quality for the AHD algorithm. The letters

‘A’ and ‘B’ were assigned to the two images are random.

The images were printed on 10”x8” FujiFilm Crystal Archive glossy photo-
graphic paper at 300 DPI using a Fuji Frontier printer. Before printing, the
images were converted from uncompressed PPM files to JPEG by ImageMag-

ick using the highest quality setting. The prints were viewed under natural

61

CHAPTER 4. EVALUATION

Figure 4.10: Images used in the user study. Subjects were presented with
two version of each image, one produced with AHD and one with Mask
Demosaicing.

lighting conditions.

The participants in the study were eight students from the Computer Labo-
ratory aged between 18 and 30, with no knowledge of demosaicing or of the
nature of the experiment. All subjects reported that they did not suffer from

colour blindness. No incentive was offered to take part in the study.

Results

The total sum of the responses for all candidates and for all of the sample
images is shown in Figure 4.11 on page 63. The results show that subjects
showed the largest preferences for AHD, but that they also expressed no
preference for a large number of the tests. This suggests that AHD and

Mask Demosaicing produce perceptibly very similar results.

In general, the subjects remarked that they had difficulty finding any dif-
ference between the images, even after extensive study. When asked for the
reason for their decision the majority of the subjects referred to difference in

colour or lighting, stating that one version was ‘brighter’, or ‘more saturated’.

62

CHAPTER 4. EVALUATION

25

20 -+

15 4

Number of responses

AHD Mask Demosaicing v1 No Preference

Figure 4.11: Results of the user study

This may be a side effect of bilinear interpolation. As bilinear interpolation
works by averaging nearby colours, it may have the effect of blurring out
highlights in the areas where it was applied. This is interesting, as previous
studies of demosaicing methods|LLDB02| have found that the subjects usu-
ally judge images by their sharpness. This suggests that Mask Demosaicing

maintains quality in the edge regions compared to AHD.

The results show that perceptible differences between AHD and Mask De-
mosaicing are not due to typical demosaicing artifacts such as zippering or
misguidance. Instead, any perceptible differences are due to subtle differ-
ences between bilinear interpolation and AHD in slowly varying parts of the

images.

63

CHAPTER 4. EVALUATION

64

Chapter 5

Conclusion

The resolution of digital cameras is increasing all the time, current high-end
models boast resolutions of over 20 megapixels. As the size of raw images
increases, the performance of image processing techniques becomes more and
more pertinent. The aim of this report has been to improve the performance
the demosaicing methods. I have described two means of improving perfor-
mance, through the use of the highly parallel architecture provided by the
GPU, and by a novel demosaicing technique that concentrates computation

only on areas where demosaicing is likely to fail.

I have shown how AHD demosaicing was implemented on the CUDA plat-
form, and how the method was adapted to make best use of the GPU ar-
chitecture. A performance evaluation of the GPU implementation showed a

30x speedup compared to a single-threaded CPU version.

Demosaicing is just one step in the image processing pipeline, other tasks
include sharpening, denoising and colour-correction. The performance eval-
uation of bilinear interpolation showed that even relatively low computation
tasks when applied to large data-sets achieve better performance on the GPU.
Based on these results, and the performance improvements of demosaicing,
it would be worthwhile to implement the entire image pipeline on the GPU,

from demosaicing to the final image.

65

CHAPTER 5. CONCLUSION

I also proposed a new demosaicing technique, Mask Demosaicing, that im-
proves the performance of current demosaicing methods, without reducing
image quality. T describe two variations of the method, one based on edge

detection and one based on artifact detection.

The evaluation of a representative set of sample images showed that Mask
Demosaicing with edge detection improves the performance of AHD by be-
tween 2.5x and 5x. However, the edge detection method’s weakness is that
it uses a fixed threshold, which can lead to failures in borderline areas in the
image. According to Hirakawa and Parks|HPO05|, for the AHD algorithm the
single greatest influence on image quality was the use of an adaptive thresh-
old. The edge detection method would also likely benefit from an adaptive

threshold, and the best method for this application is an interesting question.

The second variation of Mask Demosaicing used artifact detection. This
method proved more robust than edge detection and produces results of
almost equal quality to AHD. It offers a 2x to 4x speedup for low noise
images. However, for images with a large amount of noise, the performance

degrades until it is roughly equal to that of AHD.

The idea of applying specialised demosaicing routines to different regions in
the image could be extended further in future work. For example, while
AHD is the considered the best demosaicing method, it is biased toward
straight lines and tends to artificially introduce edges into textured regions. A
different demosaicing method, for example patterned pixel grouping|Lin03],
would produce more accurate results in these kinds of areas. An extension
to Mask Demosaicing might identify not just edges but other image features

and apply the most appropriate demosaicing technique.

Until recently demosaicing algorithms have ignored or tended to underes-
timate the effect of noise in the raw image. However, noise can introduce
errors during demosaicing which are exaggerated by further processing steps.
Hirakawa and Parks|[HP06| have proposed a method for simultaneously de-
mosaicing and denoising, and other researchers are also working on the
problem|LLHL06, ZWZ07, PFBKO08|. The presence of the noise in the raw

66

CHAPTER 5. CONCLUSION

images has impacted the effectiveness of some of the performance improve-
ments proposed. As a certain degree of noise is unavoidable in real world
data, it would be interesting to see how Mask Demosaicing could be made

more robust in the face of noisy images.

67

CHAPTER 5. CONCLUSION

68

Appendices

69

Appendix A

CIELAB colorspace

The CIE 1976 (L*, a*, b*) colour space[ICC06|, CIELAB, was designed to
represent all visible colours in a device independent manner. The L* value
represents luminance, it is in the range 0 to 100. The a* value represents the
position of the colour between red and green, and b* represents the position
of the colour between blue and yellow. The range of the two chrominance
components is -128 to 128. The euclidean distance between two colours in
CIELAB approximates their perceptual difference.

CIELAB colour space conversion

RGB values are converted to CIELAB via the standardised XYZ colour space
using the following method:

X X 049 031 020 R
Y | = o | 017697 0.81240 001063 | | G (A1)
Z : 0 0.01 0.99 B
l;
. J116(%)" — 16 when > 0.008856 (4

|~<

Y,
903.3 () otherwise

@) e

71

ax = 500

—/ =

CHAPTER A. CIELAB COLORSPACE

b = 200 (f (%) _y (;ﬂ) é) (A4)

o) 7.787x + {5 when z < 0.008856 (45)
xr) = .
x otherwise

where X, Y,, and Z,, are the normalised X, Y and Z values for the reference

white point.

72

Bibliography

|Ada97|

[AGLM93]

[APS93|

[ASHO5|

[Bay76]

[CCPY9]

[Cok87]

[Cok94]

James E Adams. Design of practical color filter array inter-
polation algorithms for digital cameras. Proc. SPIE, 3028,
1997.

L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel. Axioms
and fundamental equations of image processing. Archive for
Rational Mechanics and Analysis, 123(3):199-257, 1993.

Jim Adams, Ken Parulski, and Kevin Spaulding. Color Pro-
cessing in Digital Cameras. IEEFE Micro, pages 20-30, 1998.

David Alleysson, Sabine Siisstrunk, and Jeanny Hérault. Lin-
ear demosaicing inspired by the human visual system. IEFE
transactions on image processing : a publication of the IEEE
Signal Processing Society, 14(4):439-49, April 2005.

Bryce E. Bayer. Color imaging array. US Patent 3971065,
July 1976.

E. Chang, S. Cheung, and D. Y. Pan. Color filter array recov-
ery using a threshold-based variable number of gradients. In
Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, volume 3650 of Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, pages
3643, March 1999.

David R. Cok. Signal processing method and apparatus for
producing interpolated chrominance values in a sampled color
image signal. US Patent 4642678, February 1987.

D.R. Cok. Reconstruction of CCD images using template
matching. In Proc IS&T Annual Conf. / ICPS, 1994.

73

BIBLIOGRAPHY BIBLIOGRAPHY

|Corl0a]

|Corl0b]

[Corl0c]

[Devos]

[DLK78]

|Fre87]

[FZY09)

[GAMO2]

|GGA™]

[GGAS05]

[GLAAWV08]

NVIDIA Corporation. NVIDIA Compute PTX : Parallel
Thread FExecution ISA Version 2.0. NVIDIA Corporation,
2.0 edition, January 2010.

NVIDIA Corporation. NVIDIA CUDA Best Practices Guide.
NVIDIA Corporation, 3.0 edition, April 2010.

NVIDIA Corporation. NVIDIA CUDA Programming Guide
3.0. NVIDIA Corporation, 3.0 edition, February 2010.

Nicolas Devillard. Fast median search : an ANSI C imple-
mentation, 1998.

P.L.P. Dillon, D.M. Lewis, and F.G. Kaspar. Color imaging
system using a single CCD area array. IEEE Transactions on
Flectron Devices, 25(2):102-107, February 1978.

W.T. Freeman. Method and apparatus for reconstructing
missing color samples. US Patent 4663655, May 1987.

Ivan Olaf Hernandez Fuentes, Miguel Enrique Bravo
Zanoguera, and Guillermo Galaviz Yanez. FPGA implemen-
tation of the bilinear interpolation algorithm for image de-
mosaicking. FElectronics, Communications, and Computers,
International Conference on, 0:25-28, 2009.

B K Gunturk, Y Altunbasak, and R M Mersereau. Color
plane interpolation using alternating projections. IEEE trans-
actions on image processing : a publication of the IEEE Signal
Processing Society, 11(9):997-1013, January 2002.

Bahadir K Gunturk, John Glotzbach, Yucel Altunbasak,
Ronald W. Schafer, and Russel M. Mersereau. Demosaick-
ing: Color Filter Array Interpolation. IEFE Signal Processing
Magazine, (January 2005):44-54.

B. K. Gunturk, J. Glotzbach, Y. Altunbasak, and R. W.
Schafer. Demosaicking: color filter array interpolation. IEEFE
Signal processing magazine, 22:44-54, 2005.

Jair Garcia-Lamont, Miguel Aleman-Arce, and Julio
Waissman-Vilanova. A digital real time image demosaicking
implementation for high definition video cameras. Electronics,
Robotics and Automotive Mechanics Conference, 0:565—569,
2008.

74

BIBLIOGRAPHY BIBLIOGRAPHY

[GW92]

[Hib95]

[HPO5)

[HPO6]

[HSS09)]

[ICC06)

[1397]

lir]
[KB02]

[Ker09)

[KHOO00]

[Kil08g]

[Kim99)]

Rafael C. Gonzalez and Richard E. Woods. Digital Image
Processing. Addison-Wesley Pub, 3rd edition, 1992.

R.H. Hibbard. Apparatus and method for adaptively inter-
polating a full color image utilizing luminance gradients. US
Patent 5,382,976, January 1995.

Keigo Hirakawa and Thomas W. Parks. Adaptive
homogeneity-directed demosaicing algorithm. IEEE Trans.
Image Processing, 14:360-369, 2005.

Keigo Hirakawa and TW Parks. Joint demosaicing and de-
noising. IEEE Transactions on Image Processing, 2006.

David J. Hardy, John E. Stone, and Klaus Schulten. Multi-
level summation of electrostatic potentials using graphics pro-
cessing units. Parallel Computing, 35(3):164 — 177, 2009. Rev-
olutionary Technologies for Acceleration of Emerging Petas-
cale Applications.

Specification ICC.1:2004-10 (Profile version 4.2.0.0) Image
technology colour management - Architecture, profile format,
and data structure, 2006.

Hamilton J.F. Jr and Adams J.E. Jr. Adaptive color plan in-
terpolation in single sensor color electronic camera. US Patent
5,629,73, May 1997.

R Kakarala and Z. Baharav. Adaptive demosaicking with the
principal vector method. IEEFE Trans. Consumer Electron.,
48:932-937, November 2002.

Michael Kerrisk, editor. Linuz Programmer’s Manual: Time
- overview of time and timers. 3.21 edition, 2009.

Oren Kapah and Hagit Z. Hel-Or. Demosaicking using ar-
tificial neural networks. In Applications of Artificial Neural
Networks in Image Processing V, pages 112-120. SPIE, 2000.

Theodore Kilgore. A Practical Bayer Demosaicing Algorithm
for Gphoto. In IPCV, pages 614-620. CSREA Press, 2008.

Ron Kimmel. Demosaicing: Image Reconstruction from Color
CCD Samples. [EEFE Trans. Image Processing, 8:1221—-
1228, 1999.

75

BIBLIOGRAPHY

BIBLIOGRAPHY

[KTK98]

[LDB02|

[LH02|

[Lin03]|

[LLHLO6|

|LPY4]

[LT03]

[LZW03]

[OF96]

[OLG*07]

[PFBK0S]

J.E. Adams K. Topfer and B.W. Keelan. Modulation trans-
fer functions and aliasing patterns of CFA interpolation algo-
rithms. In IS&T PICS Conference, pages 367-370, 1998.

P. Longere, P.B. Delahunt, and D.H. Brainard. Perceptual as-
sessment of demosaicing algorithm performance. Proceedings
of the IEEE, 90(1):123-132, 2002.

R.F. Lyon and P.M. Hubel. Eyeing the camera: into the
next century. In Proc. IS&T/TSID 10th Color Imaging Conf.,
pages 349-355, 2002.

Chuan-kai Lin. Pixel Grouping for Color Filter Array Demo-
saicing, 2003.

Hung-Yi Lol, Tsung-Nan Lin, Chih-Lung Hsu2, and Cheng-
Hsien Lee. Directional weighting-based demosaicking algo-
rithm for noisy cfa environments. IEEE Transactions on Cir-
cuits and Systems, pages 489-492, 2006.

C.A. Laroche and M.A. Prescott. Apparatus and method for
adaptively interpolating a full color image utilizing chromi-
nance gradients, volume 5373. US Patent 5,373,322, Decem-
ber 1994.

Wenmiao Lu and Yap-Peng Tan. Color filter array demosaick-
ing: new method and performance measures. IEEE transac-
tions on image processing : a publication of the IEEE Signal
Processing Society, 12(10):1194-210, January 2003.

Anat Levin, A. Zomet, and Y. Weiss. Learning to perceive
transparency from the statistics of natural scenes. Advances
in Neural Information Processing Systems, 1(1):1271-1278,
2003.

Bruno A. Olshausen and David J. Field. Emergence of simple-
cell receptive field properties by learning a sparse code for
natural images. Nature, 381(6583):607-609, 1996.

J.D. Owens, David Luebke, Naga Govindaraju, Mark Har-
ris, J. Kruger, A.E. Lefohn, and T.J. Purcell. A survey of
general-purpose computation on graphics hardware. Com-
puter Graphics Forum, 26(1):80-113, 2007.

Dmitriy Paliy, Alessandro Foi, Radu Bilcu, and Vladimir
Katkovnik. Denoising and interpolation of noisy Bayer data

76

BIBLIOGRAPHY BIBLIOGRAPHY

[PTAB10]

IRGC*09]

[RRB*03]

[RSBS02]

[SF73]

[Smi96|

[SPF+07]

[WB09|

with adaptive cross-color filters. Proceedings of SPIE, pages
68221K-68221K-13, 2008.

Harold Phelippeau, H. Talbot, M. Akil, and S. Bara.
Green Edge Directed Demosaicing Algorithm. Laboratoire
d’informatique, Gaspard-Monge Internal Report, 2010.

Nicolas Robidoux, Minglun Gong, John Cupitt, Adam Tur-
cotte, and Kirk Martinez. CPU, SMP and GPU implemen-
tations of Nohalo level 1, a fast co-convex antialiasing image
resampler. In C3S2E °09: Proceedings of the 2nd Canadian
Conference on Computer Science and Software Engineering,
pages 185-195, New York, NY, USA, 2009. ACM.

Shane Ryoo, Christopher 1. Rodrigues, Sara S. Baghsorkhi,
Sam S. Stone, David B. Kirk, and Wen-mei W. Hwu. Op-
timization principles and application performance evaluation
of a multithreaded GPU using CUDA. In Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice
of parallel programming - PPoPP 08, pages 73-82, New York,
New York, USA, 2008. ACM Press.

Rajeev Ramanath, Wesley E. Snyder, Griff L. Bilbro, and
William A. Sander. Demosaicking methods for Bayer color
arrays. Journal of Electronic Imaging, 11(3):306, 2002.

I. Sobel and G. Feldman. A 3z3 isotropic gradient operator
for image processing, pages 271-272. John Wiley and Sons,
1973.

J.L. Smith. Implementing median filters in XC4000E FPGAs.
Xcell: The Quarterly Journal for Xilinx Programmable Logic
Users, 23, 1996.

John E Stone, James C Phillips, Peter L Freddolino, David J
Hardy, Leonardo G Trabuco, and Klaus Schulten. Accelerat-
ing molecular modeling applications with graphics processors.
Journal of computational chemistry, 28(16):2618-40, Decem-
ber 2007.

Zhou Wang and A.C. Bovik. Mean squared error: love it or
leave it? A new look at signal fidelity measures. IEEFE Signal
Processing Magazine, 26(1):98-117, 2009.

7

BIBLIOGRAPHY BIBLIOGRAPHY

[Wel89)

[Woo05]

[WS00]

[ZWZ07]

J. A. Weldy. Optimized design for a single-sensor color elec-
tronic camera system. In Society of Photo-Optical Instrumen-
tation Engineers (SPIE) Conference Series, volume 1071 of
Society of Photo-Optical Instrumentation Engineers (SPIFE)
Conference Series, May 1989.

Cliff Wootton. A practical guide to video and audio compres-

ston: from sprockets and rasters to macroblocks. Focal Press,
2005.

G. Wyszecki and WS Stiles. Color science: concepts and
methods, quantitative data and formulae. Wiley-Interscience,
2000.

Lei Zhang, Xiaolin Wu, and David Zhang. Color reproduction
from noisy CFA data of single sensor digital cameras. I[FEFFE
transactions on image processing : a publication of the IEEE
Signal Processing Society, 16(9):2184-97, September 2007.

78

